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Mode-Matching Analysis of Circular-Ridged
Waveguide Discontinuities

Uma Balaji and Ruediger Vahldieck

Abstract—This paper describes a mode-matching algorithm forS-
parameter computation of circular-ridged waveguide (CRW) discontinu-
ities. The ridges are shaped like the cross section of a cone (pie-shaped)
with a geometry that can be described in cylindrical coordinates. This
idea avoids the use of a mixed-coordinate system in the analysis of the
electromagnetic fields in the ridged sections, which can, therefore, be
expressed in terms of modal functions. The resulting algorithm is fast
and accurate and has been utilized to design and optimize a five-section
double-ridge filter and a quadruple-ridge waveguide transformer. The
measured response of the filter is in good agreement with the calculated
data.

Index Terms—Algorithm, circular waveguides, eigenvalue.

I. INTRODUCTION

Circular-ridged waveguide (CRW) components like filters, polariz-
ers, orthomode transducers, etc., are important elements in subsystems
for satellite communications. Low-cost design, small size, and opti-
mum performance of these components is essential to satisfy today’s
stringent payload requirements. In this context, ease of manufacturing
and accurate computer-aided design of CRW components are equally
important issues. This paper describes the design of CRW filters and
transformers in which the ridge geometry has been modified from
the usual rectangular shape to a pie shape (Fig. 1) for which the
geometry can be described entirely in cylindrical coordinates. This
approach avoids the use of a mixed-coordinate system in the field-
theory analysis of CRW structures. Thus, simplifying the algorithm
without complicating the fabrication of CRW components.

In [1] and [2], the authors have presented an eigenvalue analysis
of pie-shaped ridge structures in circular waveguides by using the
radial mode-matching method. In that work and due to the pie shaped
ridges, the electromagnetic field in the subsections of the CRW
were described by modal functions. On the basis of [1] and [2],
a scattering parameter analysis of double-ridged circular waveguide
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Fig. 1. Cross section of (a) circular waveguide (region I), (b) double-ridged
circular waveguide (region II), (c) quadruple-ridged circular waveguide (re-
gion II), and (d) sideview of the discontinuity.

discontinuities was presented in [3]. To verify the algorithm, we have
designed, built, and tested a five resonator double-ridged filter and
found very good agreement with theoretical data.

II. THEORY

A mode-matching method is developed to calculate the general-
ized scattering matrix of a discontinuity between an empty circular
waveguide and a double- or quadruple-ridged circular waveguide. The
cross section of such a discontinuity is shown in Fig. 1. Region II
in Fig. 1(d) can either be a double- or quadruple-ridged waveguide.
Since theTE1;1 mode is the fundamental mode of propagation, a
magnetic- and electric-wall symmetry can be used. The electric and
magnetic potential functions in the empty circular waveguide for such
a symmetry can be written as follows:
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The coefficientsP represent the power normalization constants and
are obtained by setting the magnitude of the power carried in each
of the modes to unity. The eigenvalues of the circular waveguide for
TE and TM modes can be determined from the zeros of the Bessel
functions [4]. The values ofM andN in (2) depend on the number of
TE and TM modes used in the evaluation of the generalized scattering
matrix. The electric and magnetic potential functions in the CRW
(region II) can be written as a sum of those in subsections (1) and
(2), shown in Fig. 1(b) or (c):
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where (1h) and (2h) are given as
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where l = m�=�
2
� � for a double-ridged cross section with ridge

thickness of2� and for the quadruple-ridged cross sectionl =

m�=�
2
� 2�. It should be noted that the orders of the Bessel and

Neumann functions used in the potential functions are nonintegers
in the ridged circular waveguide subsection (2). Similarly (1e) and
 (2e) in subsection (2) are written as
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The procedure to determine the eigenvalues and the amplitude
coefficients in the above equations have been described in [1] and
[2]. The amplitude coefficients are once again power normalized so
that the magnitude of the power carried in each of the modes is unity.
For thin ridges, the number of expansion terms (N1 andN2) in the
two subsections are chosen equal and these values, along withR,
depend on the number of TE and TM modes necessary to achieve
convergence of theS-parameters.

From the potential functions described above in the two regions of
discontinuity, the electric and magnetic fields in each of the regions
of Fig. 1 can be derived. At the interface of the two regions(z = 0),
the continuity of the tangentialE- andH-field components of the
incident and reflected waves can be written as

E
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where the superscript represent the appropriate regions in the dis-
continuity. Using the orthogonality property of the modes, the above
equation results in four sets of equations relating the unknown wave
amplitudes of the incident(F ) and reflected(B) waves. For instance,
the continuity of the tangential components of theE-field results in
the two sets of equations given below:

(F
Ih

+B
Ih
) = [LHH ](F

IIh
+B

IIh
) (10)

(F
Ie
+B

Ie
) = [LEE ](F

IIe
+B

IIe
) + [LEH ](F

IIh
+B

IIh
) (11)

where the[L] matrices give the coupling between the fundamental
and higher order TE and TM modes. The integrals of these[L]

matrices are given in the Appendix. While some of the integrals can
be evaluated analytically [4], some others are evaluated numerically.
However, all the coupling integrals are frequency independent and,

hence, the numerical integration is not repeated at every frequency
point. The continuity of the tangential components of theH-field
results in coupling matrices that are the transposed matrices of the
coupling matrices in (10) and (11) with the sets of equations given
below:
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Suitable algebraic operations on the matrix equations in (10)–(13)
yields the generalized scattering matrix of the discontinuity.

Structures like evanescent-mode filters also involve a step discon-
tinuity between two axially symmetric circular waveguides. For such
a discontinuity it is usually sufficient to use onlyTE1;n andTM1;n

modes. However, since subsequent discontinuities contain ridged
waveguide sections in whichTE2m+1;n andTM2m+1;n modes are
excited, these modes must also be considered as excitation terms for
the first discontinuity. Hence, the generalized scattering matrix of a
step discontinuity from above to below cutoff waveguide should be
calculated using a sufficient number ofTE2m+1;n andTM2m+1;n

modes. By cascading the generalized scattering matrices at vari-
ous step discontinuities, the generalizedS-matrix of the matching
networks or the evanescent-mode filters is obtained.

III. RESULTS

The transition from an empty circular waveguide to a double-
ridged circular waveguide and a symmetric iris step in circular
waveguide have been validated in [3]. Good agreement was found
with the measurements when 40 TE and TM modes were used in
the analysis. On the basis of the above investigation, a three-section
Chebyshev transformer in a double-ridged circular waveguide and a
three-resonator evanescent-mode filter was designed and presented
in [3].

A quadruple-ridged circular waveguide transformer has been de-
signed and optimized here. Its response is shown in Fig. 2. The
optimization with respect to the lengths of the transformer sections
was performed with 20 modes and a final analysis was done with
40 TE and TM modes. In order to improve the bandwidth of the
transformer, the outer circular diameter (dimensiona in Fig. 1)
of the quadruple-ridged waveguide was reduced. As a result, the
cutoff frequency of the next higher mode (TE3;1) which limits
the bandwidth of the transformer is increased and, thus, also the
bandwidth of the transformer, as illustrated in Fig. 3.

A five resonator evanescent-mode filter has also been designed,
optimized, and fabricated. The number of the TE and TM modes
used during the optimization was 30. In the final analysis of the
filter, 40 modes were included. The 0.003-in uniformly thick copper
sheet used in the practical realization was approximated as� = 5:5�.
The passband and stopband response of the calculated and realized
filter is shown in Fig. 4. Good agreement with measurements was
found. The high insertion loss of 2.5 dB in the passband of the filter
was mainly due to the impedance mismatch at the input to the filter
and the fact that the fabrication tolerances of the ridges are too high.
The wide-band response of the CRW filter behaves similar to an
evanescent-mode filter in a rectangular waveguide.

IV. CONCLUSION

This paper has introduced a mode-matching technique for field-
theory design of CRW components like filters and impedance trans-
formers. Fundamental and higher order mode interaction at and
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Fig. 2. Response of an optimum three-section quadruple-ridged circular waveguide transformer (dimensions in centimeters,� = 5
� for all sections). Section

1: a = 2, b = 1:62, 11 = 1:519, Section 2:a = 2, b = 1:09, 12 = 1:404, Section 3:a = 2, b = 0:68, 13 = 1:363, Section 4:a = 2, b = 0:5.

Fig. 3. Response of an optimum three-section quadruple-ridged circular waveguide transformer with tapered circular waveguide housing (dimensions in
centimeters,� = 5

� for all sections). Section 1:a = 2, b = 1:7, 11 = 1:162, Section 2:a = 1:95, b = 1:45, 12 = 1:474, Section 3:a = 1:9,
b = 1:25, 13 = 1:59, Section 4:a = 1:85, b = 1:2.

between discontinuities has been taken into account. An evanescent-
mode filter in circular waveguide technology has been designed and
measured. It is found that for large penetration depths of the ridge a
uniformly thick ridge can be approximated with an angle subtended
by the tip of the ridge. The technique used in this paper shows that
the method is suitable for component design in CRW’s.

APPENDIX

The integrals of the coupling matricesL are given below:
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Fig. 4. Response of an optimum five-resonator evanescent-mode circular waveguide filter of dimensions shown in Fig. 9. Solid lines: computed response,
dashed line: measured response.

where theTerm1 and Term2 are given below. Thex corresponds
to the number of the mode that is excited in cross-section I, whiley

corresponds to that in II. Also,kz represent the propagation constants
in regions I and II of the corresponding modes and is evaluated from
ko (the propagation constant in free space) and the eigenvalueskc
of the respective modes:
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where l = (n� 1)�=2�0; �0 = (�=2 � �) for double-ridged
circular waveguide in region II and�0 = (�=2� 2�) for quadruple-
ridged circular waveguide in region II. The value of�o used in the
subsequent equations remains as mentioned above for the double- and
quadruple-ridged circular waveguide. Also, for the quadruple-ridged
circular waveguide, the upper limit of the� integral in Term2 is
(�=2� 0). This change is also applicable to the following equations
for Term4 andTerm6 in the analysis of a quadruple-ridged waveguide

discontinuity
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where l = (n+ 1)�=�o.
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where l = (n� 1)�=�o.
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Simple Determination of All Capacitances
for a Set of Parallel Microstrip Lines

Florian Sellberg

Abstract—A fast and moderately accurate method to describe the
complicated dependence on design and process parameters of coupling
capacitances between a set of parallel lines is presented in this paper.
It involves only one circuit-dependent parameter at a time. This is
accomplished by calculating the capacitance coefficient matrix through
inversion of a potential coefficient matrix with much simpler dependence
on geometry. Self elements are approximately independent of the presence
of other lines, and mutual elements do not depend on linewidths or inter-
fering lines as long as the ground is sufficiently far away. The potential
coefficients are derived by inverting one- or two-line capacitance matrices
that are either theoretically calculated or determined by measurements
on integrated circuit (IC) test structures. Look-up tables for a specific IC
process can then be constructed with only linewidth as the parameter for
self potential elements and distance between line centers as parameter
for mutual potential elements. General algorithms have been derived for
microstrip on one or two layers of dielectric.

Index Terms— Coupled lines, design automation software, wiring
models.
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I. INTRODUCTION

As digital and mixed analog/digital integrated circuits (IC’s) move
higher and higher in speed and increase in size, complexity, and
packing density, the need rises to include moderately accurate models
of line-to-line and line-to-ground capacitances for the estimation
of performance degradation and crosstalk. When line length is not
negligible compared to wavelength, inductances must also be taken
into account. Much work has been devoted to alleviate the burden on
computers due to the inclusion of parasitic elements in the circuit
simulators [1]. Separate programs for evaluation of parallel lines
are available [2]. One recent work [3] describes the generation
of analytical models for interconnect capacitances in the form of
polynomials in the design parameters given the values of process
parameters. Contrary to the method described in this paper, every
addition of another line necessitates the determination of a new set
of curves with a rapid increase in the number of parameters (N lines
give 2N � 1 parameters).

Our method is based on the observation that parallel lines propa-
gating TEM waves are described by an inductance matrix with—to a
first approximation—self elements depending only on the perimeter
of the line cross section, and mutual elements depending only on
the distance between line centers, without being influenced by the
addition of new lines, whether shielding or not. The capacitance
matrix is derived by inversion of the complete inductance matrix
for the set ofN lines. With inhomogeneous dielectric outside the
conductors, wave propagation is quasi-TEM, and this simple relation
breaks down. It is found, though, that the elements of the potential
coefficient matrix (the inverse of the capacitance coefficient matrix)
show the same simple dependence on design parameters as do the
inductance elements.

II. GENERAL TEM RELATIONS

For a set ofN parallel conductors over a ground surface and
propagating TEM waves, one can define inductances (self and mutual)
and capacitances between conductors. The inductance matrix is
�0[Lij ] H/m and the capacitance coefficient matrix is"0[cij ] F/m,
both of rankN � N . If the whole space outside the conductors is
filled with a dielectric with permittivity", the following well-known
relation is true:

[cij ] = "[Lij ]
�1

: (1)

The physical capacitances per unit line length (normalized to"0)
between conductori and groundCi0 and between conductorsi and
j; Cij are connected to the capacitance coefficients

Ci0 = �jcij

Cij = �cij ; with i 6= j:
(1a)

In a strict sense, (1) is true only when the currents are confined
to the surface of the conductors (infinite conductivity)—or when the
distance between conductors and to the ground surface is much larger
than their transverse dimensions.

III. SELF-INDUCTANCE

For a single conductor over a ground plane, the inductance per
unit length depends on one dimensionless variable: the transverse
perimeter length of the conductor divided by the distance between
some point in the conductor and the ground plane. The addition of
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